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Abstract
The possibility of a stable coexistence of bubbles in supersaturated liquid-gas
solutions is investigated. It is shown that in contrast to the conclusions derived by
Ward et al. [1, 2], multi-bubble systems in the otherwise homgeneous medium
are thermodynamically unstable.

Based on thermodynamic investigations, a theory of Ostwald ripening of gas
bubbles in liquid-gas solutions is presented which includes the description of the
initial stage of this process. Differential equations describing the time develop-
ment of the mean radius and the number of bubbles are derived. For the a-
symptotic region analytic solutions in agreement with the results of Lifshitz and
Slyozov [3] are obtained.

The results can also be applied to a description of the growth of single droplets
and ensembles of droplets in multicomponent vapours, demonstrating the ana-
logy between the time development of ensembles of droplets and bubbles.

1. Introduction
In preceding papers [4-6] results of thermodynamic investigations concerning
first order phase transitions were given and a new method of kinetic description
of special stages of this process was proposed. It was assumed for the kinetic
description of the growth of the clusters that the new phase can be considered as
incompressible. Here the investigations are extended to multibubble systems,
where the assumption of incompressibility cannot be applied. Our results are
compared with the conclusions obtained by Ward et al. [1,2], in an investigation
of bubbles in liquid-gas solutions.

It was stated by these authors that in a closed volume of a liquid-gas-solution
there can exist configurations of a single bubble and a number of bubbles in
stable thermodynamic equilibrium within the otherwise homgeneous solution.
We would like to show here, that, while the first is true, the second statement is
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not valid. Under the conditions assumed by Ward et al. [1], a stable coexistence
of bubbles in the liquid-gas solution is excluded and can, therefore, not be used
for the explanation of a smaller nucleation threshold as compared with the pre-
dictions of homogeneous nucleation theory.
Moreover, it is shown that the thermodynamic investigation of a multi-bubble
system leads to a deeper insight to the late stages of phase transitions usually
denoted as Ostwald ripening [3], and a kinetic description of stwald ripening of
an ensemble of bubbles is given.

2. General thermodynamic results

2.1 The model
We consider a closed system (liquid-gas solution) under a constant external pres-
sure/? and a constant temperature T. The thermodynamic parameters are chosen
in such a way that the homogeneous initial state is metastable and therefore, a
first order phase transition by nucleation and growth of clusters can occur.

The appropriate thermodynamic potential for the given thermodynamic con-
straints is the Gibbs free energy G [7, 8, 12]. The extremal properties of G, de-
rived in classical thermodynamics, are based exclusively on the constancy of the
external pressure p together with 7"= const.; nt = const.; r = l,2, . . . , f c (k-
number of components, wrnumber of moles of the i-th component). The
existence of regions inside the heterogeneous system considered with, in general,
different values of the pressure does not affect, therefore, these conclusions of
classical thermodynamics. (Compare, in contrast the arguments of Ward et al.

The change of the Gibbs free energy Δ G due to the development of s clusters of a
new phase can to a good approximation expressed by [8, 12]:

Ó 04J - μίβ)η% +
i = l

+ ó</> 0</>} + Ó (μίβ ~ μύ "i · (2.1)
i = l

Here K£° is the volume, /4J) the chemical potential, σ%'} the surface tension and
0</) the surface area of the j- 1 h cluster. The subscripts (a) and (β) specify the
thermodynamic parameters of the clusters (a) (bubbles) and the surrounding
medium (/?). Parameters without these subscripts refer to the homogeneous
metastable initial state.

The extreme values of A G, which are of particular importance for the process of
nucleation and growth of the clusters, are given by:

dG= £ \(l>-pp + <W^*\dV<*+ Ó
;· = é IV dVV'J i = i
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The number of degrees of freedom for the whole system is, therefore, /=

Equation (2.2) leads to the following necessary equilibrium conditions:

2<7U)

pU) _ p _ ^ó« ·/ = 12 sra r— f. d — é, -£, . . . , ï

ì</> = /*,-, ;/ = 1,2,...,* (2.3)

where r^ denotes the radius of the j-t h cluster.
In general, it can be shown that the states of the heterogeneous system, defined by
(2.3), correspond either to local minima of the thermodynamic potential (ther-
modynamically stable states) or to unstable states of a saddle-point type (critical
states). If additional assumptions concerning the thermodynamic properties of
the system are added, for example incompressibility of the cluster, the number of
degrees of freedom is decreased and saddle-points can degenerate into maxima
[6].

2.2 Discussion of a special case
To simplify the derivations we restrict ourselves to binary systems and assume in
addition, that the bubbles consist mainly of the second component (solute).
These simplifications do not affect the main conclusions.
Taking into account the assumed simplifications (k = 2, «la = 0) we obtain in-
stead of (2.3):

ñè) _ ρ = _ ?L · 7 =* á -* á (j) ? J
'

= μ2β - (2.5)

Since by assumption the bubbles consist only of one component the subscript "2"
will be omitted in specifying their thermodynamic parameters.

Equations (2.4) and (2.5) can be fulfilled only if all clusters are characterized by
the same values of the parameters ra and ηΛ. In agreement with Ward et al. it was
further shown [6] that also in the case considered in this paper for a given
number of clusters s either two (rac, nac; ras, na) or no solution exist. The two
solutions can coincide under special conditions, discussed later.

The values of the solutions (rAc, nac; ras, nas) depend on the number of clusters s.
An increase of s leads to an increase of rac and a decrease of ras (cp. Fig. 1) [6].
Assuming all clusters to be identical (2.1) simplifies to:
w

A G = (P — Pa)sVa 4- (ìá — V>2f)sn* + &aSOa
2

+ Ó 0*i«-^iX·· (2.6)
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Δ G depends only on the two variables ra and «e, now. In Fig. 1 a cut through the
surface Δ G = Δ G(na, re) is shown, connecting the origin of the three dimensional
space (na = 0; rx = 0; Δ G — 0) and the extreme values of AG.
Since the number of bubbles is large, s can be considered, approximately, as a
continuous variable. A derivation of A G with respect to s leads to Eq. (2.7)
describing the variation of the extremes of A G with an increase of s:

(2.7)

AG, therefore, increases with an increasing number of clusters. The variation of
the extremes of Δ G, due to an increase of the number of bubbles, is indicated in
Fig. 1 by arrows.

s-const.

Fig. 1: Qualitative behaviour of the Gibbs free energy as a function of the common radius ra for
a fixed number of clusters. The arrows indicate the variation of the extrema with an increase
of s.

2.3 Stability analysis
In Fig. 2 analogous curves as in Fig. 1 are presented for different values of the
number of bubbles. Again, in agreement with Ward et al. [1, 2], it follows im-
mediately, that one cluster can exist in stable equilibrium within the surrounding
medium, since the state characterized by rAs, nas and s = 1 corresponds to an
absolute minimum of the thermodynamic potential.
In contrast to Ward et al., we conclude, however, that all heterogeneous state,
consisting of more than one cluster in the otherwise homogeneous medium are
thermodynamically unstable. This instability is due to the decrease of the ther-
modynamic potential with a decrease of the number of clusters as given by Eq.
(2.7).
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The same conclusions concerning the stability of the heterogeneous system also
can be derived by an exact stability analysis [6,8]. This analysis leads to the
further conclusion, that there exists a maximum number of bubbles ̂ , for which
solutions of the equations (2.4) or (2.5) are possible.
Once a system of clusters is formed in the neighbourhood of this state (r£, nc

a, sc)
the further evolution of the ensemble of clusters is expected to proceed along the
"valley" of the Gibbs free energy indicated in Fig. 2 by a dashed curve (cp. also
[9]). This development is characterized by a decrease of the number of clusters
and an increase of their mean radius. These are the typical characteristics of the
Ostwald ripening.
In the next paragraph, equations are developed, describing the growth of single
bubbles. Based on the results of the thermodynamic investigation and these
growth equations, it is further shown, that the development of an ensemble of
bubbles along the path, indicated in Fig. 2 by the dashed curve, corresponds
indeed to the process of Ostwald ripening.

AG i

Fig. 2: The Gibbs free energy as a function of the common radius re for different numbers
^0*1 < S2 < - - · < ¼ of the clusters.

3. Kinetic description of diffusion limited growth of single bubbles
In preceding papers [4, 5] a general equation was derived describing the growth
of a new phase in a first order phase transition. This equation is valid if the
growth of the new phase proceeds by an addition of single particles (atoms,
molecules).

In the special case, when the new phase consists of one spherical cluster, this
growth equation can be transformed into the following expression:
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D being the diffusion coefficient of the particles of the solute (second component)
in the medium, R the universal gas constant, Φ a characteristic thermodynamic
function, in our case G. The parameter / is a measure of the effective width of the
inhomogeneous region, it is, in general, a constant of molecular dimensions for
kinetic limited growth and it is equal to the radius of the cluster for diffusion
limited growth [4, 5].
In the following diffusion limited growth is assumed (i. e. / = ra). All derivations
can be easily repeated for the case of kinetic limited growth [4].
Equation (3.1) underlies the assumption that the variable ηΛ completely deter-
mines the state of the bubble. On the other hand, Eq. (2.2) shows that two
independent variables are necessary for a complete description of a system con-
taining one cluster. Therefore, another equation has to be added to Eq. (3.1).
Since the mechanical equilibrium (2.4) is established much more rapidly than the
diffusion equilibrium (2.5), one can assume a bubble at any instant to be in a
quasi-equilibrium state with respect to Eq. (2.4). (See also [10].) In this case ñá is
determined by the equation of state of the gas:

/ rrj\ fy *)\

where pa is given by Eq. (2.4).
Taking into account these considerations (3.1) can be transformed to

dV^ DQ2 l dAG
dt

A derivation of Eq. (2.6) with respect to re yields:

dAG
dr ··-·« n - « - _ / VA*« r*2 / j^r ( (3.4)

Inserting this, into (3.3) results in:

2óË , ÷ dn
dt

Taking into account the quasi-equilibrium with respect to Eq. (2.4) the critical
radius of a bubble can be determined by:

) · (3.6)
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A Taylor expansion of ìâ in the vicinity of ΡΛ = Ρ, truncated after the second
term leads together with Eq. (2.4) to:

· (3.7)

The growth of the bubble is accompanied by a decrease of the mole fraction x of
the second component in the medium and, therefore, by a decrease of μ2β and an
increase of rak. Using (3.7), Eq. (3.5) can be written as

--{—--!· (3.8)a,

Taking into account the equation of state of the gas (3.2), the derivative dna/dVa
can be expressed by:

dna δρα 2σα > (3·9)

and for an ideal gas by:

For sufficiently large bubbles the density ñá is nearly constant (ñá = ñá (Ñ, Τ)) and
the second term in (3.9) and (3.10) becomes small compared to the first one.
Based on Eq. (3.8) and assuming, further, the additional approximations

Q2 = 20

ñá = const. (3.11)

where ñ2ï *s the density of the second component in the solution in equilibrium
with the second component at a planar interface, Lifshitz and Slyozov [3] deve-
loped a theory of Ostwald ripening and obtained asymptotic solutions for the
mean cluster radius and the number of clusters as a function of time.
The additional assumptions are good approximations in the asymptotic region
but not for the beginning period of Ostwald ripening in the neighbourhood of
(r«> n&, ¼- In the next paragraph we propose another description which starts
directly with Eq. (3.8) omitting the assumptions (3.11).
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4. Ostwald ripening of bubbles in a liquid-gas solution
• I

4,1 Extension of the growth equation to a multi-bubble system
We suppose that as a result of nucleation processes a number of bubbles is formed
in the neighbourhood of the state (r£, nc

a, sc). The assumed initial state corre-
sponds to the point of inflexion of the function A G = AG(r^ and can be deter-
mined by the condition

expressing first ηΛ via ΤΛ by Eq. (3.2).
Each of the bubbles can be described by Eq. (3.3). Therefore we have

dt ~ fdn</>\*

where AG^ in accordance with (2.1) is given by:

= Ó {(Ρ - Ρ*») ν^ + 04° ~ μ2β)ι& + <
7 = 1

+ Ó (μίβ-μι)ηι· (4.3)

dAG(i} I dr^ is the change of the Gibbs free energy due to the variation of the
radius of the j-t h bubble.
Since a general analytic solution of the problem, i. e. a determination of the
distribution function of the radii and the number of clusters as a function of time
[3] for given initial conditions is, in general, not possible (or not found yet) an
approximate solution is derived here assuming in addition, that all clusters have
nearly the same radius ra.
Summing Eq. (4.2) over all s bubbles the following equation for the time develop-
ment of the mean bubble volume is obtained:

Ρρ2β l dAG
- (4·4)

where AG is now given by Eq. (2.6).
Q is a numerical factor, which has been introduced to compensate the error which
results from the assumption of the special distribution function. It will deter-
mined later.
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4.2 The driving force of the development of the system
The thermodynamic driving force of the development of the ensemble of bubbles
along the "valley" of the Gibbs free energy G is the change of A G resulting from
the decrease of the number of bubbles s. It can be expressed, therefore, by

dAG dAG ds .
ds dra

The equation ra = ra(s) relating the number of bubbles s and their mean radius ra
along the expected path of evolution, is given by the generalized Gibbs-
Thomson-equation (4.6):

Taking into account the quasi-equilibrium (2.4), the Gibbs-Thomson equation
leads to Eq. (3.6). A derivation of (4.6) with respect to ra results in

*„„ l + * (Α 7Ú= — ïðó25<1Ç -- - -- I — — I > . (4.7;. 2 2V di* Js [ 2σ

Using (4.6) we get for ra = re(j):

É> .]

ds J 1 id2AG\ '
'& \

(

If we take into account that μ%β depends explicitely on χβ and thus via

X = "2 '??.. (4.9)
— sna

on ra and s, equations (4.7) and (4.8) can be written as

ds 3 jV ~ 2ó '
,. _ . _ dVa

with
3r„iZ ..,. __ - J á*· ;— * I * ̂  ^ l l /Ëó Ë:/,
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Z is always negative, further it follows from the extremum conditions that along
¼ Ë

the "valley" of the Gibbs free energy the quantity 1 + Ζ — , * -—- is less and,

in the critical state (4.1) equal to minus one. A comparison of Eq. (4.8) with the
results of the thermodynamic analysis yields

Combining Eqs. (2.7), (4.4), (4.5) and (4.11), we get the growth equation

a a

dt
βα

for the mean radius of the bubbles.

4.3 Asymptotic solutions
After an initial period of slow growth (Z"1 s —1) the quantity Z~* rapidly
tends to zero, ρ2β tends to ñ20 and we obtain the asymptotic solution

When the function ra = ra(f) is known, 5 = s(t) can be obtained by (4.11). For
numerical calculations it is, however, more convenient to use a differential e-
quation relating the mean radius and the number of droplets as the second inde-
pendent equation. This equation can be obtained by a derivation of (3.6) with
respect to time. It reads

d 1 d _t . - 1
* C'°(^ - - æ * D-C 3 —

In the asymptotic region (Z"1 -> 0) the overall mass (snj of the new phase is
nearly constant and, approximately, given by:

η
, χ) - ìâ(Ñ)] . (4.16)

fi~^r
This equation can be derived from (3.6) by a Taylor expansion of μ2β viz.

*)+aF §t)„.=0-("'')+"· <4·17>
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taking further into account the additional relations

Pa*P; ^«0 (4.18)

valid for sufficiently large bubbles.
A comparison of Eqs. (4.14) and (4.16) leads to the conclusion that in the a-
symptotic region the number of bubbles decreases as

j ~ y . (4.19)

Therefore, in the asymptotic region our analysis leads qualitatively to the same
results as obtained first by Lifshitz and Slyozov [3], This agreement confirms
that the evolution of the ensemble of bubbles along the "valley" of the thermody-
namic potential corresponds indeed to the process of Ostwald ripening.
To obtain also a quantitative agreement in the asymptotic region where the
results of Lifshitz and Slyozov are exact, the parameter Q introduced in Equ.
(4.4) is set equal to

0 = ̂  - (4.20)

4.4 Discussion of the kinetic equations
Introducing the notations

= L (.ô = ï
TsL; f ÎÅ^; F=i^f 3 ,

ô ' á r fc ' â 3 â >

where rk is the critical bubble radius for a sufficiently large system (χβ = χ) and Q
is given by (4.20), Eq. (4.13) can be transformed into

(
Ç

1+z_^|£)
3Qxrx dPj

2 >7

In Figs. 3-6 the mean radius ra, the mean volume ΥΛ and the number s of the
bubbles, the density of the bubbles ñá, the overall volume of the gas phase VOV9 the
overall surface area Oov, of the bubbles and the quantities Ζ and χβ/χ are presen-
ted as functions of time.
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For the numerical calculations it was assumed, that the equation of state of the
gas can be approximated by the ideal gas law and, further, that the liquid-gas
solution is ideal:

μ2β = μ0 + RTln- . (4.23)
*o

PO and ì0 are the pressure and the chemical potential of the pure solute in a gas-
liquid equilibrium at a planar interface. In this special case the critical radius rk
can be expressed by

(4-24)

The initial state is supposed to be located in the immediate neighbourhood of the
critical state (4.1) along the "valley" of the Gibbs free energy.

In the first period of the ripening process the overall volume and the overall
surface area of the ensemble of bubbles increases rapidly, while ρ2β tends to the
equilibrium value ñ20· The main thermodynamic driving force in this state of the
ripening process is the decrease of G due to the growth of the volume of the new
phase with lower bulk contributions to the thermodynamic potential.

After this initial period the evolution of the ensemble of bubbles is described by
the asymptotic solutions (4.14) and (4.16). At this state the overall volume of the
new phase is nearly constant, the overall surface area Oov of the bubbles decreases
as:

dx
/

(4-25>
emphasizing that the main driving force of Ostwald ripening in this asymptotic
state is the decrease of the surface contributions to the thermodynamic potential
due to reduction of the total surface area. Equation (4.13) then simply reduces to:

df 1
iJ. (4.26)

This equation shows a that in the asymptotic region specific thermodynamic
properties of the considered system influence only the time scale of the process
and not the dynamics itself.
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10

ß·'

50 100 150 r

Fig. 3: The mean radius ra and the mean volume Va of the bubbles as a function of time (in reduced
variables). The parameters are given by nx = 5.43 · 104 mol, n2 = 2.512 mol, n2 = 0.628 mol,
V = l m3, p = 101337 N/m2, T = 298.15 K, D = 1.62 -10~9 m2/s, ó = 0.072 N/m corre-
sponding to a solution of nitrogen in water. Then ô and rk are equal to ô = 0.02 s, rk
= 4.74-10~7m.

3-1016 H

210*

1è'6 Ç

Ï 50 100

Fig. 4: The number of bubbles as a function of time.
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Ï 50 100 ISO

Fig. 5: The overall volume Vov and the total surface area Oov of the bubbles as functions of time.

0.1
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5-

0.5 IZI, 5*
Ëç

0.5 IZI

0.1 <L

50 100 150

Fig. 6: The density ρα of the gas in the bubble, the supersaturation χβ/χ0, *ï being the mole fraction
of the solute in equilibrium with the pure gas at a planar interface and the quantitity Z9 defined
by (4.12) as function of time.
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5. Application to the growth of droplets in multi-component vapours
Though the derivations differ to some extent the results of the thermodynamic
investigations, the kinetic equations also are valid for a description of the pro-
perties and the growth of droplets in a multi-component vapour. If in addition
incompressibility of the liquid phase is assumed, i. e.

ñá = const. , (5.1)

then in all equations —7 has to be replaced by ñá.
"V*

6. Conclusions
The main results of the present paper can be summarized as follows:

- In finite systems a cluster of the new phase, e. g. a bubble or a droplet, can exist
in a stable thermodynamic equilibrium with the surrounding otherwise homo-
geneous medium. Under the thermodynamic constraints, assumed here and by
Ward et al. [1], a stable coexistence of more than one cluster is excluded. From
the thermodynamic point of view this instability is due to the decrease of the
thermodynamic potential with a decreasing number of clusters.

- Thermodynamic considerations lead to the conclusion, that the process of
Ostwald ripening can be interpreted as an evolution of clusters along a "val-
ley" of the characteristic thermodynamic potential. A minimum value of the
mean cluster radius and a corresponding maximum number of clusters are
estimated, which can be considered as the initial point of the Ostwald ripening.

- While the first period of Ostwald ripening is dominated by the decrease of the
characteristic thermodynamic potential due to the growth of the total volume
of the new phase, in the asymptotic state the thermodynamic driving force of
Ostwald ripening consists in the decrease of the surface contributions to the
thermodynamic potential. In this asymptotic state the solutions are in agree-
ment with the results of Lifshitz and Slyozov [3]. Moreover, it can be shown,
that, again in agreement with Lifshitz and Slyozov, the mean cluster radius
corresponds to a critical cluster size [6].

These conclusions remain valid for phase transitions in solids, if the surface
contribution to the thermodynamic potential can be described by an effective
value of a surface tension [13]. Therefore the equations can be applied to a
description of the coalescence of vacancies in isotropic solids.

A behaviour, as obtained for the systein analyzed here, is always to be expected, if
the development of the new phase leads to a depletion of the surrounding
medium (see, for example [4, 11]). Therefore, always in such cases, the methods
outlined here, can be applied without principal difficulties.
The thermodynamic description is always valid, if the new phase adequately can

J. Non-Equilib. Thermodyn., Vol. 12, 1987, No. 3



270 J· Schmelzer, F. Schweitzer

be described as an ensemble of clusters. The derivation of the kinetic equations
(4.13) and (4.15) is based on the additional assumption th^t the growth of the
clusters proceeds via diffusion-like processes. If other mechanisms of growth
determine the time evolution, the kinetic equations may change, but the path of
evolution defined by the dashed curve in Fig. 2 will remain the same.
Thermodynamic investigations of the type discussed in section 2 were earlier
presented for a special case (isothermal-isochoric condensation in one-
component closed systems) by Vogelsberger [9]. The results were applied to a
reformulation of nucleation theory in application to finite systems while we could
show, that the development along the "valley" corresponds not to nucleation but
to the process of Ostwald ripening, or more general, to the further growth of the
clusters. The conclusions which can be drawn from the thermodynamic analysis,
concerning the whole process of first order phase transitions in finite systems and
a detailed comparison with the results of Vogelsberger and earlier investigations
by Rusanov [12], will be presented in a forthcoming paper.
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